Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e2400052, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578075

RESUMO

Some new hemorphin-4 analogs with structures of Xxx-Pro-Trp-Thr-NH2 and Tyr-Yyy-Trp-Thr-NH2, where Xxx is 2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanoic acid or 2-amino-3-(4-dibenzylamino-2,6-dimethylphenyl)propanoic acid, and Yyy is (2S,4S)-4-amino-pyrrolidine-2-carboxylic acid, were synthesized and characterized by electrochemical and spectral analyses. In vivo anticonvulsant and antinociceptive activities of peptide derivatives were studied after intracerebroventricular injection in mice. The therapeutic effects of the modified peptides on seizures and pain in mice were evaluated to provide valuable insights into the potential applications of the novel compounds. Electrochemical characterization showed that the compounds behave as weak protolytes and that they are in a soluble, stable molecular form at physiological pH values. The antioxidant activity of the peptides was evaluated with voltammetric analyses, which were confirmed by applying the 2,2-Diphenyl-1-picrylhydrazyl method. The compounds showed satisfactory results regarding their structural stability, reaching the desired centers for the manifestation of biological activity without hydrolysis processes at 37°C and physiological pH. Dm-H4 and H4-P1 exhibited 100% and 83% potency to suppress the psychomotor seizures in the 6-Hz test compared to 67% activity of H4. Notably, only the H4-P1 had efficacy in blocking the tonic component in the maximal electroshock test with a potency comparable to H4. All investigated peptides containing unnatural conformationally restricted amino acids showed antinociceptive effects. The analogs Db-H4 and H4-P1 showed the most pronounced and long-lasting effect in both experimental models of pain induced by thermal and chemical stimuli. Dm-H4 produced a dose-dependent thermal antinociception and H4-P2 inhibited only formalin-induced pain behavior.

2.
J Med Chem ; 67(1): 586-602, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991993

RESUMO

Finding a therapy for ischemia-reperfusion injury, which consists of cell death following restoration of blood flowing into the artery affected by ischemia, is a strong medical need. Nowadays, only the use of broad-spectrum molecular therapies has demonstrated a partial efficacy in protecting the organs following reperfusion, while randomized clinical trials focused on more specific drug targets have failed. In order to overcome this problem, we applied a combination of molecular modeling and chemical synthesis to identify novel spiropiperidine-based structures active in mitochondrial permeability transition pore opening inhibition as a key process to enhance cell survival after blood flow restoration. Our results were confirmed by biological assay on an in vitro cell model on HeLa and human renal proximal tubular epithelial cells and pave the way to further investigation on an in vivo model system.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Traumatismo por Reperfusão , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oligomicinas , Traumatismo por Reperfusão/tratamento farmacológico , Poro de Transição de Permeabilidade Mitocondrial , Células Epiteliais/metabolismo
3.
ACS Omega ; 8(47): 45078-45087, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046338

RESUMO

Here, we propose the molecular hybridization of dihydroartemisinin (DHA) and ursodeoxycholic bile acid (UDCA), approved drugs, for the preparation of antiviral agents against SARS-CoV-2. DHA and UDCA were selected on the basis of their recently demonstrated in vitro activity against SARS-CoV-2. A selection of DHA-UDCA-based hybrids obtained by varying the nature of the linkage and the bile acid conjugation point as well as unconjugated DHA and UDCA were tested in vitro for cytotoxicity and anti-SARS-CoV-2 activity on Vero E6 and Calu-3 human lung cells. The hybrid DHA-t-UDCMe, obtained by conjugation via click chemistry on a gram scale, was identified as a potential candidate for SARS-CoV-2 infection treatment due to significant reduction of viral replication, possibly involving ACE2 downregulation, no cytotoxicity, and chemical stability.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004457

RESUMO

The enormous influence in terms of bioactivity, affinity, and selectivity represented by the replacement of (L)-2,6-dimethyl tyrosine (Dmt) instead of Phenylalanine (Phe) into Nociceptin/orphanin (N/OFQ) neuropeptide analogues has been well documented in the literature. More recently, the non-natural amino acid (L)-2-methyl tyrosine (Mmt), with steric hindrance included between Tyr and Dmt, has been studied because of the modulation of steric effects in opioid peptide chains. Here, we report a new synthetic strategy to obtain Mmt based on the well-known Pd-catalyzed ortho-C(sp2)-H activation approach, because there is a paucity of other synthetic routes in the literature to achieve it. The aim of this work was to force only the mono-ortho-methylation process over the double ortho-methylation one. In this regard, we are pleased to report that the introduction of the dibenzylamine moiety on a Tyr aromatic nucleus is a convenient and traceless solution to achieve such a goal. Interestingly, our method provided the aimed Mmt either as N-Boc or N-Fmoc derivatives ready to be inserted into peptide chains through solid-phase peptide synthesis (SPPS). Importantly, the introduction of Mmt in place of Phe1 in the sequence of N/OFQ(1-13)-NH2 was very well tolerated in terms of pharmacological profile and bioactivity.

5.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012241

RESUMO

Plant-derived remedies rich in chalcone-based compounds have been known for centuries in the treatment of specific diseases, and nowadays, the fascinating chalcone framework is considered a useful and, above all, abundant natural chemotype. Velutone F, a new chalconoid from Millettia velutina, exhibits a potent effect as an NLRP3-inflammasome inhibitor; the search for new natural/non-natural lead compounds as NLRP3 inhibitors is a current topical subject in medicinal chemistry. The details of our work toward the synthesis of velutone F and the unknown non-natural regioisomers are herein reported. We used different synthetic strategies both for the construction of the distinctive benzofuran nucleus (BF) and for the key phenylpropenone system (PhP). Importantly, we have disclosed a facile entry to the velutone F via synthetic routes that can also be useful for preparing non-natural analogs, a prerequisite for extensive SAR studies on the new flavonoid class of NLRP3-inhibitors.


Assuntos
Chalconas , Inflamassomos , Chalconas/farmacologia , Flavonoides/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR
6.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887377

RESUMO

3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.


Assuntos
Canabinoides , Naftalenos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/química , Canabinoides/farmacologia , Humanos , Indóis/química , Masculino , Camundongos , Naftalenos/química , Receptor CB1 de Canabinoide
7.
Bioorg Med Chem Lett ; 72: 128822, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636649

RESUMO

Maintaining a high percentage of living and functional cells in those pathologies in which excessive cell death occurs, such as neurodegenerative disorders and cardiovascular diseases, is one of the most intriguing challenges in the field of biochemical research for drug discovery. Here, mitochondrial permeability transition-driven regulated cell death is the main mechanism of mitochondrial impairment and cell fate; this pathway is still lacking of satisfying pharmacological treatments to counteract its becoming; for this reason, it needs continuous and intense research to find new compounds as modulator of the permeability transition pore complex (PTPC) activity. In this study, we report the identification of small-molecule urea derivatives able to inhibit PTPC opening following calcium overload and selected for future use in cytoprotection.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Ureia , Trifosfato de Adenosina/metabolismo , Azirinas , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfatidilcolinas , Ureia/metabolismo , Ureia/farmacologia
8.
Neuropharmacology ; 209: 109020, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247453

RESUMO

Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and ß-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the ß-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote ß-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.


Assuntos
Fentanila , Receptores Opioides mu , Analgésicos Opioides , Animais , Fentanila/análogos & derivados , Fentanila/farmacologia , Furanos , Masculino , Camundongos , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , beta-Arrestina 2/metabolismo
9.
J Org Chem ; 87(5): 2580-2589, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35138099

RESUMO

The synthesis of a small library of NH-Boc- or NH-Fmoc-protected l-phenylalanines carrying methyl groups at positions 2 and 6 and diverse functionalities at position 4 has been achieved. The approach, which took advantage of a Pd-catalyzed directed C-H dimethylation of picolinamide derivatives, allowed the electronic and steric properties of the resulting amino acid derivatives to be altered by appending a variety of electron-withdrawing, electron-donating, or bulky groups.


Assuntos
Aminoácidos , Fenilalanina , Aminoácidos/química , Fenilalanina/química , Tirosina/análogos & derivados
10.
Bioorg Chem ; 119: 105518, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861628

RESUMO

An increased awareness of diseases associated with Human herpesvirus 6 (HHV-6) infection or reactivation has resulted in a growing interest in the evaluation of the best treatment options available for the clinical management of HHV-6 disease. However, no compound has yet been approved exclusively for HHV-6 infection treatment. For this reason, the identification of anti-HHV6 compounds provides a valuable opportunity for developing efficient antiviral therapies. A possible target for antiviral drugs is the virus-cell fusion step. In this study, we synthetized potential fusion intermediates inhibitors based on the rhodanine structure. The obtained derivatives were tested for cytotoxicity and for antiviral activity in human cells infected with HHV6. Level of infection was monitored by viral DNA quantification at different time points up to 7 days post infection. Among the synthetized derivatives, 9e showed a significative inhibitory effect on viral replication that lasted over 7 days, probably attributable to the particular combination of hydrophilic and hydrophobic substituents to the rhodanine moiety. Our results support the use of these amphipathic fusion inhibitors for the treatment of HHV-6 infections.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 6/efeitos dos fármacos , Rodanina/farmacologia , Infecções por Roseolovirus/tratamento farmacológico , Antivirais/síntese química , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rodanina/síntese química , Rodanina/química , Infecções por Roseolovirus/virologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
11.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641499

RESUMO

(1) Background: Metal dithiocarbamate compounds have long been the subject of research due to their ease of formation, excellent properties and potential applications. However, manganese complexes with dithiocarbamates, to our knowledge, have never been used for medical imaging applications. With the aim of developing a new class of mononuclear manganese(II)-based agents for molecular imaging applications, we performed a specific investigation into the synthesis of mononuclear bis-substituted Mn(II) complexes with dithiocarbamate ligands. (2) Methods: Synthesis in either open or inert atmosphere at different Mn(II) to diethyldithiocarbamate molar ratios were performed and the products characterized by IR, EA, ESI-MS and XRD analysis. (3) Results: We found that only under oxygen-free atmospheric conditions the Mn(II) complex MnL2, where L = diethyldithiocarbamate ligand, is obtained, which was further observed to react with dioxygen in the solid state to form the intermediate superoxo Mn(III) complex [MnL2(η2-O2)]. The existence of the superoxo complex was revealed by mass spectroscopy, and this species was interpreted as an intermediate step in the reaction that led the bis-substituted Mn(II) complex, MnL2, to transform into the tris-substituted Mn(III) complex, MnL3. A similar result was found with the ligand L' (= bis(N-ethoxyethyl)dithiocarbamate). (4) Conclusions: We found that in open atmosphere and in aqueous solution, only manganese(III) diethyldithiocarbamate complexes can be prepared. We report here a new example of a small-molecule Mn(II) complex that efficiently activates dioxygen in the solid state through the formation of an intermediate superoxide adduct.

12.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445476

RESUMO

4,4'-Dimethylaminorex (4,4'-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1-60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4'-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers' co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.


Assuntos
Comportamento Animal/efeitos dos fármacos , Oxazóis/toxicidade , Transtornos Psicofisiológicos/metabolismo , Transtornos Psicofisiológicos/patologia , Psicotrópicos/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazóis/classificação , Oxazóis/urina , Transtornos Psicofisiológicos/induzido quimicamente , Psicotrópicos/classificação , Psicotrópicos/urina , Estereoisomerismo
13.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299276

RESUMO

1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.


Assuntos
Analgésicos Opioides/toxicidade , Anisóis/toxicidade , Derivados de Benzeno/toxicidade , Alucinógenos/toxicidade , Fenciclidina/toxicidade , Psicotrópicos/toxicidade , Receptores Opioides/metabolismo , Tramadol/toxicidade , Analgésicos Opioides/química , Animais , Anisóis/química , Derivados de Benzeno/química , Células Cultivadas , Cricetinae , Alucinógenos/química , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fenciclidina/química , Psicotrópicos/química , Tramadol/química
14.
J Med Chem ; 64(7): 4089-4108, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33733768

RESUMO

Neuropeptide S modulates important neurobiological functions including locomotion, anxiety, and drug abuse through interaction with its G protein-coupled receptor known as neuropeptide S receptor (NPSR). NPSR antagonists are potentially useful for the treatment of substance abuse disorders against which there is an urgent need for new effective therapeutic approaches. Potent NPSR antagonists in vitro have been discovered which, however, require further optimization of their in vivo pharmacological profile. This work describes a new series of NPSR antagonists of the oxazolo[3,4-a]pyrazine class. The guanidine derivative 16 exhibited nanomolar activity in vitro and 5-fold improved potency in vivo compared to SHA-68, a reference pharmacological tool in this field. Compound 16 can be considered a new tool for research studies on the translational potential of the NPSergic system. An in-depth molecular modeling investigation was also performed to gain new insights into the observed structure-activity relationships and provide an updated model of ligand/NPSR interactions.


Assuntos
Oxazóis/farmacologia , Pirazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Animais , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Camundongos Knockout , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/metabolismo , Ligação Proteica , Pirazinas/síntese química , Pirazinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Relação Estrutura-Atividade
15.
PLoS One ; 15(2): e0229613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084249

RESUMO

Mucus form H. aspersa muller has been reported to have several therapeutic proprieties, such as antimicrobial activity, skin protection and wound repair. In this study, we have analyzed H. aspersa mucus (Helixcomplex) bio-adhesive efficacy and its defensive properties against the ozone (O3) (0.5 ppm for 2 hours) exposure in human keratinocytes and reconstructed human epidermis models. Cytotoxicity, tissue morphology and cytokine levels were determined. We confirmed HelixComplex regenerative and bio-adhesive properties, the latter possibly via the characteristic mucopolysaccharide composition. In addition, HelixComplex was able to protect from O3 exposure by preventing oxidative damage and the consequent pro-inflammatory response in both 2D and 3D models. Based on this study, it is possible to suggest HelixComplex as a potentially new protective technology against pollution induced skin damage.


Assuntos
Caracois Helix/metabolismo , Muco/química , Muco/efeitos dos fármacos , Animais , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Muco/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
16.
Neurotoxicology ; 78: 36-46, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32050087

RESUMO

The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.


Assuntos
Comportamento Animal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Toxicologia Forense/métodos , Psicotrópicos/toxicidade , Peixe-Zebra , Adamantano/análogos & derivados , Adamantano/toxicidade , Animais , Indazóis/toxicidade , Masculino , Metanfetamina/análogos & derivados , Metanfetamina/toxicidade , Camundongos Endogâmicos ICR , Tiofenos/toxicidade
17.
ChemistryOpen ; 9(2): 100-170, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025460

RESUMO

The aim of this review is to highlight the rich chemistry of α-haloamides originally mainly used to discover new C-N, C-O and C-S bond forming reactions, and later widely employed in C-C cross-coupling reactions with C(sp3), C(sp2) and C(sp) coupling partners. Radical-mediated transformations of α-haloamides bearing a suitable located unsaturated bond has proven to be a straightforward alternative to access diverse cyclic compounds by means of either radical initiators, transition metal redox catalysis or visible light photoredox catalysis. On the other hand, cycloadditions with α-halohydroxamate-based azaoxyallyl cations have garnered significant attention. Moreover, in view of the important role in life and materials science of difluoroalkylated compounds, a wide range of catalysts has been developed for the efficient incorporation of difluoroacetamido moieties into activated as well as unactivated substrates.

18.
Front Neurosci ; 13: 1163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736697

RESUMO

AKB48 is a designer drug belonging to the indazole synthetic cannabinoids class, illegally sold as herbal blend, incense, or research chemicals for their psychoactive cannabis-like effects. In the present study, we investigated the in vivo pharmacological and behavioral effects of AKB48 in male rats and measured the pharmacodynamic effects of AKB48 and simultaneously determined its plasma pharmacokinetic. AKB48 at low doses preferentially stimulated dopamine release in the nucleus accumbens shell (0.25 mg/kg) and impaired visual sensorimotor responses (0.3 mg/kg) without affecting acoustic and tactile reflexes, which are reduced only to the highest dose tested (3 mg/kg). Increasing doses (0.5 mg/kg) of AKB48 impaired place preference and induced hypolocomotion in rats. At the highest dose (3 mg/kg), AKB48 induced hypothermia, analgesia, and catalepsy; inhibited the startle/pre-pulse inhibition test; and caused cardiorespiratory changes characterized by bradycardia and mild bradipnea and SpO2 reduction. All behavioral and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM251. AKB48 plasma concentrations rose linearly with increasing dose and were correlated with changes in the somatosensory, hypothermic, analgesic, and cataleptic responses in rats. For the first time, this study shows the pharmacological and behavioral effects of AKB48 in rats, correlating them to the plasma levels of the synthetic cannabinoid. Chemical Compound Studied in This Article: AKB48 (PubChem CID: 57404063); AM251 (PubChem CID: 2125).

19.
Bioconjug Chem ; 30(9): 2444-2451, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461266

RESUMO

The general aim of the work was the validation of a new synthetic methodology designed for obtaining bifunctional heterotetrabranched peptide ligands. Applying an easily accessible synthetic route, we provided a small series of heteromultimeric peptide conjugates targeting the nociceptin/orphanin FQ (N/OFQ) peptide receptors (NOP) and mu opioid receptors. Among these, H-PWT1-N/OFQ-[Dmt1]dermorphin demonstrated a similar and high agonist potency at the NOP and mu receptors. The achieved results confirmed the robustness of the approach that is extremely versatile and virtually applicable to different peptide sequences whose pharmacological activity can be combined for generating dual acting multimeric compounds. These innovative pharmacological tools will be extremely helpful for investigating the consequences of the simultaneous activation and/or blockage of different peptidergic receptors.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Animais , Benzaldeídos/química , Células CHO , Cricetulus , Humanos , Maleimidas/química , Receptor de Nociceptina
20.
ACS Med Chem Lett ; 10(7): 1086-1092, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31312413

RESUMO

Proteasome activity affects cell cycle progression as well as the immune response, and it is largely recognized as an attractive pharmacological target for potential therapies against several diseases. Herein we present the synthesis of a series of pseudodi/tripeptides bearing at the C-terminal position different α-ketoamide moieties as pharmacophoric units for the interaction with the catalytic threonine residue that sustains the proteolytic action of the proteasome. Among these, we identified the 1-naphthyl derivative 13c as a potent and selective inhibitor of the ß5 subunit of the 20S proteasome, exhibiting nanomolar potency in vitro (ß5 IC50 = 7 nM, ß1 IC50 = 60 µM, ß2 IC50 > 100 µM). Furthermore, it significantly inhibited proliferation and induced apoptosis of the human colorectal carcinoma cell line HCT116.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...